3.3.7 \(\int \frac {\sqrt {c+d x^3}}{x (4 c+d x^3)} \, dx\)

Optimal. Leaf size=65 \[ \frac {\tan ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {3} \sqrt {c}}\right )}{2 \sqrt {3} \sqrt {c}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{6 \sqrt {c}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 65, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {446, 83, 63, 208, 203} \begin {gather*} \frac {\tan ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {3} \sqrt {c}}\right )}{2 \sqrt {3} \sqrt {c}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{6 \sqrt {c}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[c + d*x^3]/(x*(4*c + d*x^3)),x]

[Out]

ArcTan[Sqrt[c + d*x^3]/(Sqrt[3]*Sqrt[c])]/(2*Sqrt[3]*Sqrt[c]) - ArcTanh[Sqrt[c + d*x^3]/Sqrt[c]]/(6*Sqrt[c])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 83

Int[((e_.) + (f_.)*(x_))^(p_.)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Dist[(b*e - a*f)/(b*c
 - a*d), Int[(e + f*x)^(p - 1)/(a + b*x), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[(e + f*x)^(p - 1)/(c + d*
x), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[0, p, 1]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {\sqrt {c+d x^3}}{x \left (4 c+d x^3\right )} \, dx &=\frac {1}{3} \operatorname {Subst}\left (\int \frac {\sqrt {c+d x}}{x (4 c+d x)} \, dx,x,x^3\right )\\ &=\frac {1}{12} \operatorname {Subst}\left (\int \frac {1}{x \sqrt {c+d x}} \, dx,x,x^3\right )+\frac {1}{4} d \operatorname {Subst}\left (\int \frac {1}{\sqrt {c+d x} (4 c+d x)} \, dx,x,x^3\right )\\ &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{3 c+x^2} \, dx,x,\sqrt {c+d x^3}\right )+\frac {\operatorname {Subst}\left (\int \frac {1}{-\frac {c}{d}+\frac {x^2}{d}} \, dx,x,\sqrt {c+d x^3}\right )}{6 d}\\ &=\frac {\tan ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {3} \sqrt {c}}\right )}{2 \sqrt {3} \sqrt {c}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{6 \sqrt {c}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 59, normalized size = 0.91 \begin {gather*} \frac {\sqrt {3} \tan ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {3} \sqrt {c}}\right )-\tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{6 \sqrt {c}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[c + d*x^3]/(x*(4*c + d*x^3)),x]

[Out]

(Sqrt[3]*ArcTan[Sqrt[c + d*x^3]/(Sqrt[3]*Sqrt[c])] - ArcTanh[Sqrt[c + d*x^3]/Sqrt[c]])/(6*Sqrt[c])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.05, size = 65, normalized size = 1.00 \begin {gather*} \frac {\tan ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {3} \sqrt {c}}\right )}{2 \sqrt {3} \sqrt {c}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{6 \sqrt {c}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[Sqrt[c + d*x^3]/(x*(4*c + d*x^3)),x]

[Out]

ArcTan[Sqrt[c + d*x^3]/(Sqrt[3]*Sqrt[c])]/(2*Sqrt[3]*Sqrt[c]) - ArcTanh[Sqrt[c + d*x^3]/Sqrt[c]]/(6*Sqrt[c])

________________________________________________________________________________________

fricas [A]  time = 0.82, size = 147, normalized size = 2.26 \begin {gather*} \left [\frac {2 \, \sqrt {3} \sqrt {c} \arctan \left (\frac {\sqrt {3} \sqrt {d x^{3} + c}}{3 \, \sqrt {c}}\right ) + \sqrt {c} \log \left (\frac {d x^{3} - 2 \, \sqrt {d x^{3} + c} \sqrt {c} + 2 \, c}{x^{3}}\right )}{12 \, c}, -\frac {\sqrt {3} \sqrt {-c} \log \left (\frac {d x^{3} - 2 \, \sqrt {3} \sqrt {d x^{3} + c} \sqrt {-c} - 2 \, c}{d x^{3} + 4 \, c}\right ) - 2 \, \sqrt {-c} \arctan \left (\frac {\sqrt {d x^{3} + c} \sqrt {-c}}{c}\right )}{12 \, c}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^3+c)^(1/2)/x/(d*x^3+4*c),x, algorithm="fricas")

[Out]

[1/12*(2*sqrt(3)*sqrt(c)*arctan(1/3*sqrt(3)*sqrt(d*x^3 + c)/sqrt(c)) + sqrt(c)*log((d*x^3 - 2*sqrt(d*x^3 + c)*
sqrt(c) + 2*c)/x^3))/c, -1/12*(sqrt(3)*sqrt(-c)*log((d*x^3 - 2*sqrt(3)*sqrt(d*x^3 + c)*sqrt(-c) - 2*c)/(d*x^3
+ 4*c)) - 2*sqrt(-c)*arctan(sqrt(d*x^3 + c)*sqrt(-c)/c))/c]

________________________________________________________________________________________

giac [A]  time = 0.16, size = 50, normalized size = 0.77 \begin {gather*} \frac {\sqrt {3} \arctan \left (\frac {\sqrt {3} \sqrt {d x^{3} + c}}{3 \, \sqrt {c}}\right )}{6 \, \sqrt {c}} + \frac {\arctan \left (\frac {\sqrt {d x^{3} + c}}{\sqrt {-c}}\right )}{6 \, \sqrt {-c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^3+c)^(1/2)/x/(d*x^3+4*c),x, algorithm="giac")

[Out]

1/6*sqrt(3)*arctan(1/3*sqrt(3)*sqrt(d*x^3 + c)/sqrt(c))/sqrt(c) + 1/6*arctan(sqrt(d*x^3 + c)/sqrt(-c))/sqrt(-c
)

________________________________________________________________________________________

maple [C]  time = 0.19, size = 468, normalized size = 7.20 \begin {gather*} -\frac {\left (\frac {2 \sqrt {d \,x^{3}+c}}{3 d}+\frac {i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (2 x +\frac {-i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right ) d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {\left (x -\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right ) d}{-3 \left (-c \,d^{2}\right )^{\frac {1}{3}}+i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {i \left (2 x +\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right ) d}{2 \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \left (2 \RootOf \left (d \,\textit {\_Z}^{3}+4 c \right )^{2} d^{2}+i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \RootOf \left (d \,\textit {\_Z}^{3}+4 c \right ) d -\left (-c \,d^{2}\right )^{\frac {1}{3}} \RootOf \left (d \,\textit {\_Z}^{3}+4 c \right ) d -i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {2}{3}}-\left (-c \,d^{2}\right )^{\frac {2}{3}}\right ) \EllipticPi \left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}}{3}, \frac {2 i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \RootOf \left (d \,\textit {\_Z}^{3}+4 c \right )^{2} d +i \sqrt {3}\, c d -3 c d -i \left (-c \,d^{2}\right )^{\frac {2}{3}} \sqrt {3}\, \RootOf \left (d \,\textit {\_Z}^{3}+4 c \right )-3 \left (-c \,d^{2}\right )^{\frac {2}{3}} \RootOf \left (d \,\textit {\_Z}^{3}+4 c \right )}{6 c d}, \sqrt {\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{\left (-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) d}}\right )}{3 d^{3} \sqrt {d \,x^{3}+c}}\right ) d}{4 c}+\frac {-\frac {2 \sqrt {c}\, \arctanh \left (\frac {\sqrt {d \,x^{3}+c}}{\sqrt {c}}\right )}{3}+\frac {2 \sqrt {d \,x^{3}+c}}{3}}{4 c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x^3+c)^(1/2)/x/(d*x^3+4*c),x)

[Out]

-1/4/c*d*(2/3*(d*x^3+c)^(1/2)/d+1/3*I/d^3*2^(1/2)*sum((-c*d^2)^(1/3)*(1/2*I*(2*x+(-I*3^(1/2)*(-c*d^2)^(1/3)+(-
c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)*((x-(-c*d^2)^(1/3)/d)/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3))*d)
^(1/2)*(-1/2*I*(2*x+(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)/(d*x^3+c)^(1/2)*(2*_a
lpha^2*d^2+I*(-c*d^2)^(1/3)*3^(1/2)*_alpha*d-(-c*d^2)^(1/3)*_alpha*d-I*3^(1/2)*(-c*d^2)^(2/3)-(-c*d^2)^(2/3))*
EllipticPi(1/3*3^(1/2)*(I*(x+1/2*(-c*d^2)^(1/3)/d-1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)*3^(1/2)/(-c*d^2)^(1/3)*d)^(1
/2),1/6*(2*I*(-c*d^2)^(1/3)*3^(1/2)*_alpha^2*d+I*3^(1/2)*c*d-3*c*d-I*(-c*d^2)^(2/3)*3^(1/2)*_alpha-3*(-c*d^2)^
(2/3)*_alpha)/c/d,(I*3^(1/2)*(-c*d^2)^(1/3)/(-3/2*(-c*d^2)^(1/3)/d+1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)/d)^(1/2)),_
alpha=RootOf(_Z^3*d+4*c)))+1/4/c*(2/3*(d*x^3+c)^(1/2)-2/3*arctanh((d*x^3+c)^(1/2)/c^(1/2))*c^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {d x^{3} + c}}{{\left (d x^{3} + 4 \, c\right )} x}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^3+c)^(1/2)/x/(d*x^3+4*c),x, algorithm="maxima")

[Out]

integrate(sqrt(d*x^3 + c)/((d*x^3 + 4*c)*x), x)

________________________________________________________________________________________

mupad [B]  time = 4.66, size = 93, normalized size = 1.43 \begin {gather*} \frac {\ln \left (\frac {{\left (\sqrt {d\,x^3+c}-\sqrt {c}\right )}^3\,\left (\sqrt {d\,x^3+c}+\sqrt {c}\right )}{x^6}\right )}{12\,\sqrt {c}}+\frac {\sqrt {3}\,\ln \left (\frac {\sqrt {3}\,d\,x^3-2\,\sqrt {3}\,c+\sqrt {c}\,\sqrt {d\,x^3+c}\,6{}\mathrm {i}}{d\,x^3+4\,c}\right )\,1{}\mathrm {i}}{12\,\sqrt {c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c + d*x^3)^(1/2)/(x*(4*c + d*x^3)),x)

[Out]

log((((c + d*x^3)^(1/2) - c^(1/2))^3*((c + d*x^3)^(1/2) + c^(1/2)))/x^6)/(12*c^(1/2)) + (3^(1/2)*log((c^(1/2)*
(c + d*x^3)^(1/2)*6i - 2*3^(1/2)*c + 3^(1/2)*d*x^3)/(4*c + d*x^3))*1i)/(12*c^(1/2))

________________________________________________________________________________________

sympy [A]  time = 13.28, size = 66, normalized size = 1.02 \begin {gather*} \frac {2 \left (\frac {d \operatorname {atan}{\left (\frac {\sqrt {c + d x^{3}}}{\sqrt {- c}} \right )}}{12 \sqrt {- c}} + \frac {\sqrt {3} d \operatorname {atan}{\left (\frac {\sqrt {3} \sqrt {c + d x^{3}}}{3 \sqrt {c}} \right )}}{12 \sqrt {c}}\right )}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x**3+c)**(1/2)/x/(d*x**3+4*c),x)

[Out]

2*(d*atan(sqrt(c + d*x**3)/sqrt(-c))/(12*sqrt(-c)) + sqrt(3)*d*atan(sqrt(3)*sqrt(c + d*x**3)/(3*sqrt(c)))/(12*
sqrt(c)))/d

________________________________________________________________________________________